MATH 512 HOMEWORK 4

Due Friday, April 12

Recall that if $F : \lambda^{<\omega} \to \lambda$, $C_F := \{x \mid F^{"}x^{<\omega} \subset x\}$ i.e. the set of all closure points of F.

Problem 1. Suppose that $\kappa > \omega_1$.

- (1) Show that $\{x \in \mathcal{P}_{\kappa}(\lambda) \mid |x| \ge \omega_1\}$ is club in $\mathcal{P}_{\kappa}(\lambda)$.
- (2) Use that to show that $\langle C_F | F : \lambda^{<\omega} \to \lambda \rangle$ do not generate the club filter.

Problem 2. Show that the club filter on $\mathcal{P}_{\kappa}(\lambda)$ is generated by the sets $\langle C_F | F : \lambda^{<\omega} \to \lambda \rangle$ and $\{x | \kappa \cap x \in \kappa\}$

Recall that q is (M, \mathbb{P}) -generic if for every maximal antichain $A \in M$, $A \cap M$ is predense below q (i.e. every $r \leq q$ is compatible with some $s \in A \cap M$).

Problem 3. Suppose that \mathbb{P} is a forcing notion and $q \in \mathbb{P}$. Let λ be large enough and $M \prec H_{\lambda}$ be such that $\mathbb{P} \in M$. Show that the following are equivalent:

- (1) q is (M, \mathbb{P}) -generic.
- (2) $q \Vdash "\dot{G} \cap M$ is a \mathbb{P} -generic filter over M".

Problem 4. Suppose that $\mathbb{P} * \dot{\mathbb{Q}}$ is a two step iteration and $M \prec H_{\lambda}$ is a countable structure with $\mathbb{P} * \dot{\mathbb{Q}} \in M$. Suppose that $p \in \mathbb{P}$ and \dot{q} is a \mathbb{P} -name for a condition in $\dot{\mathbb{Q}}$, such that

- p is (M, \mathbb{P}) -generic, and
- $p \Vdash_{\mathbb{P}} ``\dot{q} is (M[\dot{G}_P], \dot{\mathbb{Q}})$ -generic".

Show that $\langle p, \dot{q} \rangle$ is $(M, \mathbb{P} * \dot{\mathbb{Q}})$ -generic.

(Here G_P is the canonical name for a generic filter for \mathbb{P} .)

Problem 5. Suppose that \mathbb{P} is a forcing notion that does not preserve stationary subsets of ω_1 . Show that there is a collection $\langle D_\alpha | \alpha < \omega_1 \rangle$ of dense subsets of \mathbb{P} , such that there is no filter $G \subset \mathbb{P}$ in the ground model that meets them all.

Remark 1. The above problem shows that we cannot have a forcing axiom for posets that are not stationary set preserving for subsets of ω_1 .